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or
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The formula for the effective area is now

Ap = [(1 +2Hjr) + ZO*40) |
l
1 al du
+ ij(ﬂ + 75) dx} 2.2)
0

of which expression (2.1) is a special case with U and
u zero. We may evidently obtain (2.2) more directly
by visualising the neutral surface as the effective
boundary of the piston in which case the frictional
force corresponding to b) above vanishes and we are
left simply with the pressure forces acting on the
effective boundaries of the piston. We also have the
equivalent form

R [1 +2u(0)fr +
1 1
2 dp du
+7F(f—hﬂ-dx+jp3-dx>] (2.3)
0

0

1

!
which is convenient for use when the integral J —h
0

P .
Z—gd.v (07' i h dp) is of interest, as is the case, for
0

example, when the flow method (section 5) is conside-
red.

b) The effects of special assumptions

The problem of calculating the actual changes of
effective area of practical designs of piston-cylinder
assembly, on the basis of the above general formulae,
is complicated. It would be necessary to know the
interrelated quantities u, U and p as functions of z,
and since the pressure gradient dp/dx is governed by
the normal equation of viscous flow (see equation 5.1),
the pressure dependence of the coefficient of viscosity
would also need to be taken into account. It is not,
however, the aim of the present paper to attempt such
calculations, but rather to describe direct experimen-
tal methods for the accurate determination of the
distortion factors with the minimum of assumptions
regarding the detailed behaviour of the system. We
therefore consider only certain special cases which are
useful in the applications which follow.

A useful approximation may be derived from the
foregoing equations by assuming that the component
of u(x) or U(x) due to the fluid pressure in the inter-
space between piston and cylinder may be taken to
be proportional to the pressure p(x) at the same posi-
tion. The relevant terms in the integrals on the right
hand side then become integrable without the neces-
sity foc any further knowledge of the actual functional
forms of u(x), U(x) or p(x). There is fair support from
elastic theory for this assumption, more especially in
the case of the solid cylinder in which the length is
large compared with its radius, a condition which
applies to the pistons of most pressure balance assem-

blies other than those catering for only a low range of
pressure. CHREE (1889, 1901) has given polynomial
solutions for the equilibrium of a finite solid cylinder
for cases in which the lateral pressure is ecither a
linear or quadratic function of the axial co-ordinate.
The conditions are satisfied by functions wu(z) and
p(x) which are accurately proportional, provided the
normal tractions over the flat ends, instead of being
identically zero, are assumed only to average to zero.
By Saint-Venant’s principle, however, the effect of
this disturbance will be appreciable for only a short
distance from each end, and may be neglected if the
ratio of length to radius is considerable. The constant
of proportionality is the same as in the case of uniform
pressure on a solid cylinder of infinite length. FiLox
(1902) has obtained solutions for pressure distribu-
tions expressed in series of trigonometric functions of
« which lead to a similar result provided the wave-
lengths involved are fairly large compared with the
radius. The effects of discontinuous pressure distribu-
tions, or narrow bands of applied pressure, have also
beon discussed (Barron 1941 ; RANKIN 1944 TRANTER
& Craaas 1947), with the general result that even the
clfects of discontinuities are largely lost at an axial
distance of only about half the radius. If, therefore,
the pressure changes along the length of the assembly
are reasonably smooth, no great error is likely to be
incurred by applying this assumption to the piston of
the assembly. Taking into account the additional
change of radius due to the end thrust on the piston,
it is easily shown that the relevant terms involving «
on the right hand side of equation (2.2) reduce to
P (3 0 — 1)/2 E where K and o are respectively Young’s
modulus and Poisson’s ratio, so that we now have,
using also (2.1),

l
U(0) 1 daU

PBo-1
e B
P

2K r

AP=A.,[1+ -dx} .

(2.4)
Another useful form, obtained directly from (2.3), is

P
Ap=m2[1 + 28e-h 2 Ikdp] . (25)
0

The application of a similar assumption to deal
with the effects of internal pressure in a hollow cylin-
der with thick walls is less secure. CHREE (1901) has
given a corresponding solution with U(z) and p(x)
proportional for the case where p(x) is a linear func-
tion of z, but its validity would depend on the condi-
tions assumed at the ends. The case of a discontinuous
distribution of pressure has been considered briefly by
TRANTER (1946). In the ideal case of a cylinder whose
length is large compared with its radius and wall
thickness, where the working section is removed some
distance from the points of attachment of the ends,
and the pressure distribution is reasonably smooth,
a useful approximation may result. Proceeding from
equation (2.4), and taking for definiteness the case
where the cylinder walls are not subjected to longitu-
dinal stress, we then obtain (Love 1952), denoting by
R’ the outer radius of the cylinder,

P [(1+0)R'*+(1—0) R? J
7 d =y
(cylinder)

dp =4[t 45 Ba—1) +
(piston)




